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Abstract

We prove convergence of a distributed gradient on several assumptions that are to some extent violated
projection method for optimal routing in a data communi- in practice. These are:
cation network. The analysis is carried out without any
synchronization assumptions and takes into account the a) The quasistatic assumption, i.e. the external traffic
possibility of transients caused by updates in the arrival rate for each OD pair is constant over time.
routing strategy being used. This assumption is approximately valid when there is a

large number of user-pair conversations associated with

1. INTRODUCTION each OD pair, and each of these conversations has an
The most popular formulation of the optimal distri- arrival rate that is small relative to the total arrival

buted routing problem in a data network is based on a rate for the OD pair (i.e. a "many small users" as-
multicommodity flow optimization whereby a separable sumption). An asymptotic analysis of the effect of
objective function of the form violation of this assumption on the stationary character

of the external traffic arrival rates is given in [7].

ij (iJ)Z D (F'3)
(ij) b) The fast setting time assumption, i.e. transients

in the flows F13 due to changes in routing are negligi-

is minimized with respect to the flow variables F i, ble. In other words once the routing is updated, the

subject to multicommodity flow constraints ([1], [2], flows F
13

settle to their new values within time which
[3], [121). Here (ij) denotes a generic directed is very small relative to the time between routing

ij .updates. This assumption is typically valid in datagram
network link, and D is a strictly convex differenti- networks but less so in virtual circuit networks where,

able, increasing function of Fij which represents in existing virtual circuits may not be rerouted after a

turn the total traffic arrival rate on link (i,j) routing update. When this assumption is violated, link

measured for example in packets or bits per second. flow measurements F'J reflect a dependence not just on
the current routing but also on possibly several past

We want to find a routing that minimizesT this routings. A seemingly good model is to represent each

objective. By a routing we mean a set of active paths F'3 as a convex combination of the rates of arrival
for each origin-destination (OD) pair (set of paths at (i,j) corresponding to two or more past routing
carrying some traffic of that OD pair), together with updates.
the fraction of total traffic of the OD pair routed
along each active path. c) The synchronous update assumption, i.e. all link

rates F1i are measured simultaneously, and are received

A typical example of a distributed routing algorithm simultaneously at all network nodes who in turn
operates roughly as follows: simultaneously carry out a routing update. However,

there may be technical reasons (such as software com-

The total link arrival rates F j are measured plexity) that argue against enforcing a synchronous up-
by time averaging over a period of time, and are date protocol. For example the distributed routing

communicated to all network nodes. Upon reception of algorithm of the ARPANET [4] is not operated synchro-
these measured rates each node updates the part of the nously.
routing dealing with traffic originating at that node.
The updating method is based on some rule, e.g. a In this paper-we show that projection methods, one
shortest path method [21, [41, or an iterative of the most interesting class of algorithms for dis-
optimization algorithm [11, [5], [6]. tributed optimal routing, are valid even if the settling

time and synchronous update assumption are violated to

There are a number of variations of this idea - for a considerable extent. Even though we retain the
example some relevant function of F

ij
may be measured in quasistatic assumption in our analysis we conjecture

place of Fij, or a somewhat different type of routing that the result of this paper can be generalized along
policy may be used, but these will not concern us for the lines of another related study [7] whereby it is
the time being. The preceding algorithm is used in this shown that a routing algorithm based on a shortest path
paper as an example which is interesting in its own rule converges to a neighborhood of the optimum. The
right but also involves ideas that are common to other size of this neighborhood depends on the extent of
types of routing algorithms. violation of the quasistatic assumption. A similar

deviation from optimality can be caused by errors in

Most of the existing analysis of distribution the measurement of Fij. In our analysis these errors

routing algorithms such as the one above is predicated are neglected.

Work supported by DARPA under Contract No. ONR-N00014- In the next section we provide some background on
75-C-1183 and an IBM Faculty Development Award. distributed asynchronous algorithms and discuss the

relation of the result of the present paper with earlier
analyses. In section 3 we formulate our class of
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distributed asynchronous routing algorithms, while paths for carrying the flow from i to j.) For each OD
Section 4 provides convergence analysis. pair w = (i,j), let rw be the total arrival rate (at

node i) of traffic that has to be sent to node j
II. ASYNCHRONOUS OPTIMIZATION ALGORITHMS (measured, for example, in packets or bits per second).

For each path p ~ Pw we denote by xw~ the amount ofWe provide here a brief discussion of the currently For each path p P, we denote by xp the amount of
available theory and tools of analysis of asynchronous flow which is routed through path p. Naturally, we have
distributed algorithms. In a typical such algorithm
(aimed at solving an optimization problem) each proces- x > 0, Vp e Pw, Vw, (3.1)
sor i has in its memory a vector x

1
which may be inter- w,p -

preted as an estimate of an optimal solution. Each
processor obtains measurements, performs computations x r , Vw. (3.2)
and updates some of the components of its vector. Pe w
Concerning the other components, it relies entirely on
messages received from other processors. We are mainly

Let us define a vector x with components x , peP .
interested in the case where minimal assumptions are w w,p w
placed on the orderliness of message exchanges. Constraints (3.1), (3.2) may be written compactly as

x e G , where G is a simplex (in particular, G is

There are two distinct approaches for analyzing compac and convex).
algorithmic convergence. The first approach is
essentially a generalization of the Lyapunov function Suppose that there is a total of M OD pairs and let
method for proving convergence of centralized iterative us index them so that the variable w takes values in
processes. The idea here is that, no matter what the {1,...,M}. Then, the totality of flows through the
precise sequence of message exchanges is, each update by network may be described by a vector x = (x1 .....XM) .
any processor brings its vector x

i
closer to the opti- Naturally, x is subject to the constraint

mum in some sense. This approach applies primarily to x e Glx.. xGM = G.

problems involving monotone or contraction mappings For any ij
with respect to a "sup"-norm (e.g. a distributed link (i,j) in the network, let F denote
shortest path algorithm) [8,9]; it is only required the corresponding traffic arrival rate at that link.
that each processor communicates to every other proces- Clearly,
sor an infinite number of times. 

F 3= Z x (3.3)
w,p

The second approach is based on the idea that if w=l eP wp
the processors communicate fast enough relative to the (i,j)ep
speed of convergence of the computation, then the
evolution of their solution estimates x

i
may be (up to A cost function, corresponding to some measure of con-

first order in the step-size used) the same as if all gestion through the network, is introduced. We assume
processors were communicating to each other at each the separable form
time instance [10,11]. The latter case is, however,
mathematically equivalent to a centralized (synchronous) ij ij
algorithm for which there is an abundance of techniques D = D (F ). (3.4)

and results. Notice that in this approach, slightly (i,j)eE
stronger assumptions are placed on the nature of the
communication process than in the first one. This is We assume that for each link (i,j) e E, D'j is convex,
compensated by the-fact that the corresponding method continuously differentiable and has a Lipschitz
of analysis applies to broader classes of algorithms. continuous derivative.

Unfortunately, the results available cannot be We are interested in the case where the nodes in
directly applied to the routing problem studied in this the network adjust the path routing variables x so
paper and a new proof is required. A main reason is as to minimize (3.4). Since a set of path floww'p
that earlier results concern algorithms for uncon- variables {x :pePw, we{l,...,M}} determines uniquely
strained optimization. In the routing problem, the the link flow variables (through (3.3)), it is
non-negativity and the conservation of flow introduce more convenient to express the cost function in terms

more convenient to express the cost function in terms
inequality and equality constraints. While equality

of the path flow variables. We are thus led to the
constraints could be taken care by eliminating some of cost function
the variables, inequality constraints must be explicit-
ly taken into account. Another difference arises be- D(x) D j(x), (3.5)
cause, in the routing algorithm, optimization is carried (i,j)CE
out with respect to path flow variables, whereas the
messages being broadcast contain estimates of the link where
flows (see next section). In earlier results the
variables being communicated were assumed to be the Dij (x) (<e'j x>) (3.6)
same as the variables being optimized.

and eij is a vector with entries in {0,1}, determined
III. THE ROUTING MODEL

by (3.3). Clearly, D
ij

inherits the convexity and
We present here our basic assumptions, our nota- smoothness properties of D'i.

tion and a simple model by which the nodes in a com-
munication network may adjust the routing of the flow Let us now consider the situation where the flows
through that network.

change slowly with time, due to re-routing decisions
made by the nodes in the network. Accordingly, the

We are given anetwork described by a directed flows at time n are described by a vector x(n) =
graph G = (V,E). (V is the set of nodes, E the set of
directed links. For each pair w = (ij) of distinct (x1 (n),...,xM(n)) e G. Let us assume that the routingdirected links. For each pair w = (i,j) of distinct

decisions for the flow corresponding to a particular
nodes i and j (also called an origin-destination, or OD pair w = (ij) are made by the origin node i. In

OD pair w = (i,j) are made by the origin node i. In
OD, pair) we introduce P , a set of directed paths from an ideal situation, node i would have access to the
i to j, containing no loops. (These are the candidate exact value of x(n) and perform the update



3D + We now describe the process by which X (n) is
x (n+l) = [x (n) y- w a (x(n))] . (3.7) formed.

w

For each link (i,j), node i estimates from time to
(Here y is a positive scalar step-size, U a positive For each link (ij), node i estimates from time to
scaling constant and [ r]+ denoteps the proection on time the amount of traffic through that link. Practi-

G with respect to the Euclidean norm.) In a practical cally, these estimates do not correspond to instantane-
wtuation, however, (3.7) is bound to be unrealistic ous measurements but to an average of a set of measure-
for several reasons: (3.7)is bound to be unrealistic ments obtained over some period of time. Accordingly,

at each time n, node i has available an estimate

(i) It assumes perfect synchronization of all origin n
nodes. F 3(n) = E c

]
(n;m)F

]
(m) (3.12)

m=n-Q
(ii) It assumes that x(n) (or, equivalently, the link
flows Fij(n) at time n) may be measured exactly at time Here, c 

i j
(n;m) are nonnegative scalars summing to one

n. (for fixed n), and Q is a bound on the time over which

measurements are averaged plus the time between the
(iii) Even if the origin node i is able to compute computation of consecutive estimates of the flow. These
x (n+l) exactly through (3.7), the actual flows through estimates are broadcast from time to time (asynchronous-
the network, at time n+l, will be different from the ly and possibly with some variable delay). Let us as-
computed ones, unless the settling time is negligible. sume that the time between consecutive broadcasts plus
The above necessitate the development of a more the communication delay until the broadcasted messages
realistic model, which is done below. reach all nodes is bounded by some T. It follows that

at time n each node k knows the value of F1i(mk) for
First, because of remark (iii) we will differentiate some mk with n-T<mk<n. Combining this observation with

between the actual flows through the network (denoted (3.12) we conclude that at time n, each node k knows
by x(n), x (n), etc.) and the desired flows, as de- an estimate i'i(n) satisfying
termined by the computations of some node; the latter k
will be denoted by x(n) and'x (n). The routing de- n
cisions of some node at time n are determined by the ij(n) -= dk J)F (m) (3.13)
desired flows x (n). However, due to transients, m=n-C
each component xw (n) of the actual flow x(n) will
have some value between x p(n) and xw (n-l). Simi- ..
larly, xw (n-l) will be a convex combination of where C=T+Q and dk (n;m) are (unknown) nonnegative co-

'p efficients summing to one, for fixed n.xwp (n-l) and Xw,p(n-
2
). Repeating this procedure, we

conclude that x (n) is in the convex hull of For each OD pair w, the corresponding origin node
(0), x (...x (n). For n large enough, (let us denote it by k) uses the values of 'i (n) to

P(0) should have negligible influence on x (n) andw,p aD
wi.J be ignored for convenience. We may thus conclude form an estimate A (n) of (x(n)) as follows. Note
that there exist nonnegative coefficients a. (n;k) that w
such that w,

n - ij
(F (n)) ,if (ij)Ep

a p(n;k) = 1, Vn,w,pePw , (3.8) D 
i

(3.14)
k=l w 3x (x(n)) = (3.14)

n w,p0, otherwise.
x (n) = Z a (n;k)x (k), Vnw,peP . (3.9)
w,p k=l w'P w,p Accordingly, a natural estimate. is given (componentwise)

by:

It seems realistic to assume that if x (k) is held
w, p ij j

constant, say equal to x, the actual flows x(n) should A (n) = (F (n)) . (3.15)
w,p ij k

settle to x at a geometric rate. Accordingly: (i,j)ep aF k

Assumption: There exist constant B>0, ae[0,1) such that-- ' 'The development of our model is now complete. To
summarize, the basic equation is (3.11), where x(n) is

(n;k) < B n-k, n,k,w,pePw. (3.10) determined by (3.9), X (n) is determined by (3.15),

Fk
j
(n) is given by (3.13) and Fij is related to x by

Concerning the computation of the desired flows we (3.3).
postulate an update rule of the form (cf. (3.7)).

_ _ ~ w~w~n)1+ ~Let us close this section with a remark. A distri-

xw(n+l) = [x (n)-y Xwkw(n)] 
+

(3.11) buted version of the Bellman algorithm for shortest

aD paths has been shown to converge appropriately [8],
Here X (n) is some estimate of D- (x(n)) which is, in [9] even if the time between consecutive broadcastsw DX
general, inexact due to asynchronism and delays in ob- is unbounded. In our model however, we have to assume
taining measurements. However, it would be unnatural boundedness because otherwise there are examples that

to assume that the computation (3.11) is carried out at demonstrate that convergence is not guaranteed. Of
each time instance for each OD pair. We therefore course such an assumption is always observed in practice.

define a set T of times for which (3.11) is used. For~all nTw, we simply let x (n+1) = x (n). We only A simple example is the following: consider the
assume that the time between consec w updates network of Figure 1. There are three origin nodes (nodesassume that the time between consecutive updates
(equivalently, the difference of consecutive elements 1,2, and 3), with input arrival rate equal to 1 at each
of T ) is bounded, for each w. one of them, and a single destination node (node 6).

w For each OD pair there are two paths. For each origin



node i, let x. denote the flow routed through the path so that
containing node 4. Let DiJ(Fij ) = (Fij)

2
for (i,j) =

(4,6) or (5,6) and DiJ(F'i) = 0 for all other links. xw (n+l) 
=
x (n) + s (n). (4.4)

In terms of the variables xl, x2, x3, the cost becomes
Using (4.2) with a =-yw X w(n), we obtain

D(xl,x2,X3 ) = (Xl+x2 +X3 ) + (3-X1 -X2-X3)2 .(3.16)> >
2

We assume that the settling time is zero, so that we do or
not need to distinguish between actual and desired
flows, and that each node i (i=1,2,3) knows x. exactly <Xw(n), s (n)> <- IIsw(n)I /ylw . (4.5)
and is able to transmit its value instantaneously to
the remaining origin nodes. Suppose that initially Using (4.4), (3.9) and the assumption (3.10), it is
xl=x2 =x3=1 and that each origin node executes a large easy to show that for some A1 >0O (independent of y or n)

number of gradient projection iterations with a small
stepsize before communicating the current value of x. n-l
to the other nodes. Then, effectively, node i solves Jfx(n) - x(n) < A1 B IIs(n)|) . (4.6)
the problem k=l

min {(x +2)2 + (1-x)2}2 Furthermore, comparing (3.14) to (3.15) and using
m<x <l+ ' the Lipschitz continuity of aDij/F'ij, we conclude that

-1- for some constants A2,. ,A7 (independent of y)
thereby obtaining the value x.=0. At that point the
processors broadcast their current values of x.. If 3D ^
this sequence of events is repeated, _each x w1ll be- I I-x (x(n)) - X (n) < A2 max IFk

3
(n)-F (n) <

come again equal to 1. So, (x ,x ,x3) oscillates w i,j,k
between (0,0,0) and (1,1,1) without ever converging to
an optimal routing. The same behavior is also observed i i
if the cost function (3.16)' is modified by adding a < A3 max max |F (m)-F (n) 

<

term n (xl + x + x3), which makes it strictly convex, i, n-C<m<n2 3
as long as O<C<<1.

<A max I Jx(m)-x(n) I I <IV. RESULT AND CONVERGENCE PROOF 4 x(m)-x(n)
n-C<m<n

Theorem: With the algorithm and the assumptions intro-
duced in the last section and provided that the step- <A max x(m-x(m -
size y is chosen small enough, D(x(n)) converges to - 4 n-c<m<n
min D(x) and any limit point of {x(n)} is a minimizing --
xeG + I x(n)-x(n)j I <
point. Moreover, x(n)-x(n) converges to zero. Finally, n-l n-l
if each D

13
is strictly convex (as a function of theA 5 n-ks(k) f + A6 s(m) <

link flow F
13)

and if, for each OD pair w=(i,j), P - =l m=n-C
contains all paths from i to j, then the link flows
Fij(n) converge to their (unique) optimal values. n-l

n-1 ls(k)I (4.7)Lemma: Let [-]+ denote projection on a convex set G Rn. < A7 n-k s(k) I (4.7)k=l
Assume that 0eG. Then,

<a,[al > > |iI [a]I 12, Va e IRn. (4.1) (The second inequality follows from (3.13), the third
from (3.3), the fourth is the triangle inequality, the

Proof: If aeG, [a]
+

= a and (4.1) holds trivially. So, fifth uses (4.6).) Using Lipschitz continuity once
let us assume that [a]+ 0 G and form a triangle with more, (4.6) and (4.7) we finally obtain, for some
vertices at the points a, [a]+ and the origin, denoted A%>O (independent of n,y)
by A,B,O, respectively (see Figure 2). Let G_ be the
intersection of G with the plane defined by that tri- 3D- n-l
angle. Let us draw the normal to AB through point B. Ix (x(n))-X ( l < A8 s(k)II. (4.8)
This line is a supporting hyperplane for Go. Therefore, w k=l
0 and A lie at different sides of that line; hence the
angle OBA is larger than 90 degrees. Let us now draw Using a first order series expansion for D, we
the normal to OB through B. It must intersect the have
segment OA at some point C, because, < OBA > 90-.
Hence, D(x(n+l)) < D(x(n)) + Z <-x (x(n)),s (n)>+A9I s(n)I

2
<

w w
|[a] || = oI 2

OB 
=

<OB,OC> < <OB,OA> = <a,[a] >.

By translating the origin to an arbitrary point x, (4.1) < D(x(n))+Z<w(n),sw(n)> + A8 Is(k) II Is(n) 1+
becomes:

<a, [x+a]+-x> > II [x+al+-xl 2, xeG, alRn. (4.2) + A9 Ils(n) 12 <

Proof of the Theorem: We define s(n) to be the vector A n
with components < D(x(n)) - 1 IIs(n)1

2
+ A1 Z 1 n-k Is(k) 12

[-X (n)-Yp w (n) I+ - (n), nwT (4.9)w ww w w
S (n) = (4.3) (Here, the second inequality was obtained from (4.8); the

0 nVTw third from (4.5).) Summing (4.9) for different values

' "1~1 -- 1- -~ 1- ~ I--~ c---~ ~ -- ~-~w



of n and rearranging terms we obtain For certain special choices of the cost function D j
and under certain assumptions, the partial derivative

D(x(n+l)) < D(x(l)) A- 1 2 11 s(k)||. 3D J/a3F equals the average delay of a packet traveling
k=l 1 i=k through link (i,j). In that case, it is very natural

to assume that this derivative may be measured directly,
(4.10) without first measuring the flow FiJ. Our result may

A10 A11 be easily shown to be valid for this class of algorithms
Suppose that y is small enough so that - > 0.

y 1- - as well.
Note that D is continuous on a compact set, hence
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nodes measure and broadcast messages with their esti-
mates of the link flows Fij. Other nodes receive the
broadcasted messages and use them to compute estimates

of the expression - (F
ij
) which is required in the

aF e ssi

algorithm. An alternative possibility would be to let,
say node j, to measure directly or compute the value of

ij- (F'
]
) and broadcast that value to the other nodes.dF1J
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